ACADEMIC YEAR 2020-2021

Odd Semester

S7 EEE (2016 Batch)- KTU Scheme

Sl no	Course code	Subject name	Staff handled
1	EE 401	ELECTRONIC COMMUNICATION	ARJUN MOHANLAL
2	EE 403	DISTRIBUTED GENERATION & SMART GRIDS	SEETHU VIJAYAN
3	EE 405	ELECTRICAL SYSTEM DESIGN	RAHUL P RAJ
4	EE 407	DIGITAL SIGNAL PROCESSING	CHINCHU S
5	EE 409	ELECTRICAL MACHINE DESIGN	MANJU J
6	EE 465	POWER QUALITY	GAYATHRI DEVI
7	EE451	SEMINAR & PROJECT PREMIMINARY	ARJUN MOHANLAL
8	EE 431	POWER SYSTEM LAB	ARJUN MOHANLAL

COURSE OBJECTIVES AND COURSE OUTCOME FOR

EE 401 ELECTRONIC COMMUNICATION

		Course Outcomes
Sl. No.	Course Objectives	On completion of course the students will be able to:
1	To impart knowledge about different modulation and demodulation schemes for analog communications.	Explain the block diagram of analog communication systems.
2	To create awareness on the principles of digital communication.	Describe the various analog modulation techniques, their generation and detection, and illustrate the various functional blocks in analog communication.

3	To introduce the concepts of Television, Radar.	Explain the principle of different technologies of digital communication.
4	To familiarize with cellular and satellite communication systems.	Illustrate the Television receiver and transmitter systems.
5		Describe the various digital communication techniques used for Television and radar.
6		Explain the concepts of Cellular and Satellite Communication.

EE 403 DISTRIBUTED GENERATION & SMART GRIDS

SL NO	COURSE OBJECTIVE	COURSE OUTCOME
1	To develop a conceptual introduction to distributed generation systems, micro grids, smart grids and their control	The students will be able to explain various distributed generation systems
2	To equip students in working with project and to take up research work in connected areas	The students will be able to understand the microgrids and their control schemes
3	To give knowledge about the different cloud architecture	Understand various developments happening in the field of Smart Grids.
4	Make students understand the substation automation, feeder automation	Understand various developments happening in the field of substation automation

COURSE OBJECTIVES AND COURSE OUTCOMES FOR

EE 405 ELECTRICAL SYSTEM DESIGN

SI	COURSE OBJECTIVES	SUBJECT LEARNING
NO		OUTCOMES OR COURSE
		OUTCOMES

		ON COMPLETION OF THE COURSE STUDENTS WILL BE THE ABLE TO:
1	To impart knowledge about design of electrical installation	Design electrical layout of LT installation
2	To impart knowledge about layout of electrical installation	Design electrical layout of HT installation
3	To impart knowledge about electrical design of auditorium and theatres	Design control circuit of motors
4	To impart knowledge about electrical design of large scale industries	Design backup system for industries
5		Design earthing systems
6		Design ac theatres

EE 407 DIGITAL SIGNAL PROCESSING

Sl No.	Course Objectives	Course Outcomes
1	To introduce the discrete time signals and their mathematical manipulations	Student understand continuous-time signals and discrete-time signals
2		Student understand linear time- invariant systems theory and applications
3		Student can perform mathematical and graphical convolution of signals and systems
4	To represent the periodic and aperiodic signals in the frequency domain and to introduce the concept of frequency domain sampling, computation of DFT and FFT	Student understand continuous-time and discrete-time Fourier series/transforms

5	Knowledge of frequency-domain representation and analysis concepts using Fourier Analysis tools, Z-transform	Student can sketch the magnitude and phase of signals in transform domains
6		Analyze system properties based on impulse response and Fourier analysis.
7	To provide an understanding of Digital Signal Processing principles, algorithms and applications.	Learn the basic elements of digital signal processing frequency domain sampling, properties of DFT
8	To study computationally efficient method of DFT-FFT.	To learn butterfly diagram, DIT FFT and DIF FFT.
9	To study the design techniques for digital filters	Discuss various methods to design IIR and FIR filters like window method, frequency sampling method , impulse invariance, bilinear transformation.
10	To give an understanding of essential DSP structures and applications .	Learn the Direct Form, Cascade Form, parallel and Lattice Structure for FIR and IIR filters.

EE 409 ELECTRICAL MACHINE DESIGN

SI NO	COURSE OBJECTIVES	SUBJECT LEARNING OUTCOMES OR COURSE OUTCOMES
		ON COMPLETION OF THE COURSE STUDENTS WILL BE
		THE ABLE TO:
1	To gain the knowledge about calculation of total MMF in the machine	Design dc machines
2	To find the dimensions of various parts of the machine	Design transformer with reduced loses

3	To examine various loses in the machines	Calculate the losses and efficiency of machines
4	To understand the usage of auxiliary winding	Design of alternators
5		Design of induction machines
6		Design of compensating windings

EE 465 POWER QUALITY

SL NO	COURSE OBJECTIVE	COURSE OUTCOME
1	To make aware of the power quality problems	Know the basics of power issues
2	To impart knowledge in the IEEE Standard	Standard and recommended practices of harmonics, different types of switching devices
3	To give basics knowledge of design of filters	Basics of different type active and passive filters
4	To familiarize different types of power quality measuring instruments	Power quality management in smart grid

COURSE OBJECTIVES AND COURSE OUTCOMES FOR

EE 451 SEMINAR & PROJECT PREMIMINARY

SL NO		COURSE OUTCOME
1	To develop skills in doing literature survey, technical presentation and report preparation.	The students will be able to i. Analyse a current topic of professional interest and present it before an audience
2	To enable project identification and execution of preliminary works on final semester project	ii. Identify an engineering problem, analyse it and propose a work plan to solve it.

EE 431 POWER SYSTEM LAB

		Course Outcomes
Sl. No.	Course Objectives	On completion of course the students will be able to:
1	To prepare the students to have a basic knowledge of high voltage experiments.	Ability to conduct experiments high voltage equipments.
2	To prepare the students to have a basic knowledge testing of solid, liquid and gas materials.	Ability to conduct testing of solids liquid and gases.
3	The ability to conduct testing and experimental procedures on different types of electrical relays.	Have knowledge of various parts and testing of relays.
4	To expose the students to power flow analysis in Matlab and e-TAP.	Understand the power flow using different methods in softaware.

S5 EEE (2017 Batch) - KTU Scheme

Sl no	Course code	Subject name	Staff handled
1	EE301	POWER GENERATION, TRANSMISSION & PROTECTION	SEETHU VIJAYAN
2	EE303	LINEAR CONTROL SYSTEMS	GAYATHRI DEVI
3	EE305	POWER ELECTRONICS	RAHUL P RAJ
4	EE307	SIGNALS AND SYSTEMS	MADHAVI VIKRAMAN

5	EE309	MICROPROCESSOR AND EMBEDDED SYSTEMS	ARATHI BABU
6	EE367	NEW AND RENEWABLE ENERGY SOURCES	АМЛТН S
7	EE331	DIGITAL CIRCUITS AND EMBEDDED SYSTEMS LAB	ARATHI BABU
8	EE333	ELECTRICAL MACHINES LAB II	GAYATHRI DEVI G
9	EE341	DESIGN PROJECT	SEETHU VIJAYAN

EE301 POWER GENERATION, TRANSMISSION AND PROTECTION

		Course Outcomes
Sl. No.	Course Objectives	On completion of course the students will be able to:
1	To understand different power generating stations and their working.	Discuss the various power generating methods.
2	To create awareness on the economical aspects of power generation.	Interpret the effect of economics on electric power generation.
3	To explain the modeling of transmission lines and their classification.	Discuss various components of transmission lines, their classification and modeling.
4	To expose to the mechanical and electrical characteristics of transmission lines.	Analyze the mechanical and electrical characteristics of transmission lines.
5	To understand high voltage dc transmission system and distribution systems.	Explain HVDC transmission and distribution system.

6	To select the appropriate
	distribution system for specific
	area.

SI No.	Course Objectives	Subject Learning Outcomes or course outcomes
		On completion of course the student will be able to:
1	To impart knowledge in open and closed loop system and modelling of mechanical and electrical systems.	Develop Mathematical models of mechanical and electromechanical system using F-V and F-I analogy.
2	To familiarize with different kinds of control system components and their response to various signals.	Ability to get an insight on various control system components.
3	To impart knowledge in stability of LTI systems using root locus method.	Analyze the stability of linear time invariant systems using root locus techniques.
4	To explain the concept of stability analysis using Routh array and Nyquist plots.	Analyze stability using Nyquist and Nichols plot.

EE303 LINEAR CONTROL SYSTEMS

EE305 POWER ELECTRONICS

SL NO	COURSE OBJECTIVE	COURSE OUTCOME
1	To learn about various types of power electronic devises along with its working and applications.	To understand concepts of power electronics and various applications
2	To impart the knowledge in the design of switched mode regulators, ups and convertors with their working and applications	Ability to get an insight on various power electronics application's in all means of convertors
3	To develop understanding the concepts of transducers and digital instruments	To understand principle of operation of Transducers
4	To familiarize with different kinds of digital instruments and spectrum analyzers	To gain the ability to know how to work with digital instruments along with by knowing how they works.

COURSE OBJECTIVE AND COURSE OUTCOME FOR

EE 307 SIGNAL AND SYSTEMS

SL NO	COURSE OBJECTIVE	COURSE OUTCOME
1	To make aware of the power quality problems	Know the basics of power issues

2	To impart knowledge in the IEEE	Standard and recommended practices of
	Standard	harmonics, different types of switching
		devices
3	To give basics knowledge of design of	Basics of different type active and
	filters	passive filters
4	To familiarize different types of power	Power quality management in smart grid
	quality measuring instruments	

EE 309 MICROPROCESSOR & EMBEDDED SYSTEMS

Sl	Course Objective	Course Outcome
no		On completion of course the student will be able to
1	To learn the 8085 architecture and instruction set.	The ability to formulate programs based on instruction set.
2	To get an overview of timing and control of 8085.	The skill to analyze the response of 8085 microprocessor using timing and control circuit.
3	To impart basic concept about embedded system and identify the unique characteristic of real time system	Discuss various types of embedded system, and the issues involved in its component design
4	To impart knowledge about 8051 microcontroller	Interpret the 8051 microcontrollers and programming methods for 8051
5	To create programming knowledge of timers and counters in assembly and embedded C	Explained the various steps in programming 8051 timers counters and explained about serial communication

6	To understand about the various	Explicate how various peripherals are
	peripherals that can be interfaced	interfaced with 8051
	with 8051	

EE367 NEW & RENEWABLE ENERGY SYSTEMS

		Course Outcomes
Sl. No.	Course Objectives	On completion of course the students will be able to:
1	To understand and analyze the present and future energy demand of world and nation	know the energy demand of world, nation and available resources to fulfil the demand
2	Techniques to exploit the available renewable energy resources such as, solar, bio-fuels, wind power, tidal and geothermal effectively.	Know about the exploration of nonconventional energy resources and their effective tapping technologies
3	To impart knowledge about different types of energy sources.	Know the Effective utilization of available renewable energy resources
4	To create awareness on the principles of conversion of heat	Acquire the knowledge of modern energy conversion technologies
5		Explain the principle of different technologies for generating power from renewable energy sources
6		Explain the concepts of solar, wind, ocean and geothermal energy

EE331 DIGITAL CIRCUITS & EMBEDDED SYSTEMS LAB

		Course Outcomes
Sl. No.	Course Objectives	On completion of course the students will be able to:
1	To prepare the students to have a basic knowledge of high voltage experiments.	Ability to conduct experiments high voltage equipment's.
2	To prepare the students to have a basic knowledge testing of solid, liquid and gas materials.	Ability to conduct testing of solids liquid and gases.
3	The ability to conduct testing and experimental procedures on different types of electrical relays.	Have knowledge of various parts and testing of relays.
4	To expose the students to power flow analysis in Matlab and e-TAP.	Understand the power flow using different methods in software.

COURSE OBJECTIVES AND COURSE OUTCOME FOR

EE 333 ELECTRICAL MACHINES LAB – II

		Course Outcomes
Sl. No.	Course Objectives	On completion of course the students will be able to:
1	To prepare the students to have a basic knowledge of induction motors.	Ability to conduct experiments on Ac Machines to find the characteristics.
2	To prepare the students to have a basic knowledge of alternators.	Ability to conduct No Load and Full load tests on synchronous and Induction Machines

3	The ability to conduct testing and experimental procedures on different types of electrical machines.	Have knowledge of various parts of a electrical machine.
4	To expose the students to the operation synchronous and induction machines and give them experimental skills.	Understand the starting and connecting procedures of synchronous generators, and to obtain the 'V' curves of synchronous motors.
5		Skill to recognize different electrical machine
6		Ability to analyze possible causes of discrepancy in comparison to theory

EE 341 DESIGN PROJECT

SL NO	COURSE OBJECTIVE	COURSE OUTCOME
1	To develop skills in doing literature survey, technical presentation and report preparation.	The students will be able to i. Analyse a current topic of professional interest and present it before an audience
2	To enable project identification and execution of preliminary works on final semester project	ii. Identify an engineering problem, analyse it and propose a work plan to solve it.

S3 EEE (2018 Batch)- KTU Scheme

SL	COURSE	SUBJECT NAME	STAFF
NO	CODE		HANDLED
1	MA201	LINEAR ALGEBRA AND COMPLEX ANALYSIS	LIJIMOL

2	EE 201	CIRCUITS AND NETWORKS	ARJUN
			MOHANLAL
3	EE203	ANALOG ELECTRONICS & CIRCUITS	PONNAMBILI
4	EE 205	DC MACHINES AND TRANSFORMERS	KARTHIKA V
5	EE 207	COMPUTER PROGRAMMING	VIVITHA V
6	HS 200	BUSINESS ECONOMICS	GEETHA VIMAL
7	EE 231	ELECTRONIC CIRCUITS LAB	PONNAMBILI
8	EE 233	PROGRAMMING LAB	VIVITHA

MA201: LINEAR ALGEBRA & COMPLEX ANALYSIS

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	Identify complex-differentiable functions	Determine whether a given function is differentiable, analytic and if so find its derivative. To find harmonic conjugate
2	Use conformal mapping	Upon completion Conformal Mapping students will master concepts and theories of conformal mappings of simply connected and multiply connected domains.
3	Compute complex line integrals	Find parametrizations of curves, and compute complex line integrals directly. Use antiderivatives to compute line integrals. Use Cauchy's integral theorem and formula to compute line integral.

		Express complex-differentiable functions as power series.
4	Use the residue theorem.	Identify the isolated singularities of a function and determine whether they are removable, poles, or essential. Use the residue theorem to compute complex line integrals and real integrals.
5	Learn to solve systems of linear equations and application problems requiring them. Learn about and work with vector spaces and subspaces.	Demonstrate ability to manipulate matrices and to do matrix algebra. Demonstrate ability to solve systems of linear equations. Demonstrate ability to work within vector spaces and to distil vector space properties.
6	Learn to find and use eigenv alues and eigenvectors of a matrix.	Find the characteristic equation, eigenvalues and corresponding eigenvectors of a given matrix.

EE201: CIRCUITS AND NETWROKS

SL NO	COURSE OBJECTIVE	COURSE OUTCOME
1	To learn about various techniques available to solve various types of circuits and networks	Having an idea to simplify electrical circuits with the help of several theorems
2	To explain basic concepts in combinatorial graph theory and how they serve as models for many standard problems	Ability to apply graph theory in solving networks
3	To gain capability to syntheses a circuit using steady state and transient response and application of Laplace Transform	Ability to apply Laplace Transform to find transient response

4	To impart knowledge in network functions and having idea on two port networks.	Ability to synthesis networks

EE203: ANALOG ELECTRONICS

SI NO:	COURSE OBJECTIVE	COURSE OUTCOMES
1	To impart depth knowledge in electronic semiconductor devices and circuits giving importance to the various aspects of design and analysis.	Able to bias transistor , attain biasstability and design clipping andclamping circuits.Able to analyze amplifier circuits.Able to analyze the frequency response ofamplifiers.
2	Depth knowledge about the structure, working, biasing of JFET and MOSFET.	Able to design and compare different oscillators and waveform generators
3	Understand their capabilities and limitations and make decisions regarding their best utilization in a specific situation. Study large signal amplifiers and feedback amplifiers	Acquire reasonable proficiency in the analysis and design of power amplifiers and feedback amplifiers
4	To provide knowledge about different types amplifier & oscillator circuits and their design.To provide a sound understanding of the fundamentals of operational amplifier circuits.	Able to analyze differential amplifiers and study the applications of opamp.

5	To provide a thorough understanding of the operational amplifier circuits and their functions.	Able to design opamp circuits like inverting and noninverting amplifier circuits- Summing and difference amplifiers, Differentiator and Integrator circuits. Logarithmic amplifier- Half Wave Precision rectifier - Instrumentation amplifier etc.
6	Study Wave form generation, Astable and Monostable multivibrators using 555, Oscillator circuits using Op-amps	Able to design Wave form generators, Astable and Monostable multivibrators using 555, Oscillator circuits using Op- amps.

SL NO	COURSE OBJECTIVE	COURSE OUTCOME
1	Identify DC Generator types and appreciate their performance.	Understand construction and operating principle of DC machines and transformers.
2	Describe the principle of operation of DCmotor and select appropriate motor typesfor different applications.	Acquire knowledge on characteristics of DC machines and transformers for different operating conditions.
3	Analyze the performance of different types of DC motors.	Test and calculate performance parameters of DC machines and transformers.
4	Familiarize with the principle of operation and performance of three phase transformers.	Familiarize with the principle of operation and performance of three phase transformers.

COURSE OBJECTIVES AND COURSE OUTCOMES FOR

HS200: BUSINESS ECONOMICS

SI.	Course Objectives	Subject Learning Outcomes or
-----	-------------------	------------------------------

No.		Course Outcomes
		On completion of course the students will be able to:
1	To familiarize the prospective engineers with elementary Principles of Economics and Business Economics.	Make investment decisions based on capital budgeting methods in alignment with micro economic theories.
2	To acquaint the students with tools and techniques that are useful in their profession in Business Decision Making which will enhance their employability;	Make investment decisions based on capital budgeting methods in alignment with macro economic theories.
3	To apply business analysis to the "firm" under different market conditions.	Analyse the profitability of the firm, economy of operation.
4	To apply economic models to examine current economic scenario and evaluate policy options for addressing economic issues.	Determination of price under various market situations with good grasp on the effect of trade cycles in business.
5		Gain knowledge of elementary accounting concepts used for preparing balance sheet and interpretation of balance sheet.
6		

EE231: ELECTRONIC CIRCUITS LAB

SI NO:	COURSE OBJECTIVE	COURSE OUTCOMES
1	Design and construct simple electronic circuits to accomplish a specific function	Able to design rectifiers, clipping, clamping, amplifiers, etc
2	Understand their capabilities and limitations and make decisions regarding their best utilization in a specific situation.	Able to design and compare different oscillators and waveform generators
3	Students should have to acquire reasonable proficiency in the analysis and design of basic electronic circuits.	Able to analyze the frequency response of amplifiers and able to design voltage regulators
4	Introduction to SPICE and simulation of experiments	Able to design the circuit and generate circuit layout using SPICE

EE 233 PROGRAMMING LAB

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	To impart the basic concepts C programming	Able to develop simple applications like calculator, interest calculations etc. using C
2	Understand the C programming using array, structure	Able to develop programs for alphabetical sorting of names, sorting of students details based on certain criteria
3	Practise usage of functions in programming	Familiarized with modularised programming

4	To provide the knowledge of pointers, programming using command line arguments, files	Able to store and retrieve data records permanently
5	Find accurate solutions for numerical problems using computer programming.	Able to develop solutions for Newton Raphson method, Gauss elimination, Gauss Jordan elimination, RK method

S1 EEE (2019 Batch)- KTU 2019 Scheme

SL	COURSE	SUBJECT NAME	STAFF HANDLED
NO	CODE		
1	MA101	LINEAR ALGEBRA AND CALCULUS	SANGEETHA S
2	PHT 100	ENGINEERING PHYSICS A	SASI B
3	EST 110	ENGINEERING GRAPHICS	SASI K S
4	EST 120	BASICS OF CIVIL AND MECHANICAL ENGINEERING	JOHN P GEORGE
5	HUN 101	LIFE SKILLS	SREETI GANGADHARAN
6	PHL 120	ENGINEERING PHYSICS LAB	SASI B
7	ESL 120	CIVIL AND MECHANICALWORKSHOP	NEERAJA CHANDRASEKHAR

COURSE OBJECTIVES AND COURSE OUTCOME FOR

MA 101: LINEAR ALGEBRA AND CALCULUS

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	To give the definition of an infinite series and explain what is meant by the sequence of partial sums. Relate the convergence or divergence of the series to the sequence of partial sums.	Evaluate the limit of a sequence of numbers (infinite series) and determine whether the series converges.
2	Compute partial derivatives of functions of several variables. Apply the theorem on mixed partial derivatives.	Understand the meaning of partial derivatives and calculate partial derivatives.
3	Use concepts of calculus to the model real-world problems	Compute dot product, cross product, length of vectors. Compute partial derivatives, derivatives of vector-valued functions, gradient functions.
4	Evaluate volumes of bounded solids and areas of bounded regions by using the ideas of double and triple integrals.	To change a double integral to polar co ordinate. Compute (relatively simple) triple integrals
5	Apply the concept of line integral to work and circulation. Know the definition and properties of conservative vector fields and their relationship to gradient fields.	Determine if a vector field is conservative and find a potential function if conservative. Evaluate line integrals in the plane and in space, including line integrals of vector fields.
6		

PHT 100: ENGINEERING PHYSICS A

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	To acquire knowledge about desalination of brackish water and treatment of municipal water.	Develop innovative methods to produce soft water for industrial use and potable water at cheaper cost.
2	To gain the knowledge of conducting polymers, bio- degradable polymers and fibre reinforced plastics.	Substitute metals with conducting polymers and also produce cheaper biodegradable polymers to reduce environmental pollution. Design economically and new methods of synthesis nano materials.
	To learn significance of green chemistry and green synthesis.	Have the knowledge of converting solar energy into most needy electrical.
4	To understand mechanism of corrosion and preventive methods.	Apply their knowledge for protection of different metals from corrosion. To prevents the monuments from getting corroded.
5	To have an idea and knowledge about the Chemistry of Fuels.	Recent trends in electrochemical energy storage devices.
6	To study different types of spectroscopy.	Learn how to use different spectroscopy techniques for analysis purpose of simple molecules.

EST110: ENGINEERING GRAPHICS

mes or
the students will
)

1	To apply the principles of mechanics to practical engineering problems.	Understand the fundamental concepts of mechanics.
2	To identify appropriate structural system for studying a given problem and isolate it from its environment.	Students would be able to apply and demonstrate the concepts of resultant and equilibrium of force system.
3	To develop simple mathematical model for engineering problems and carry out static analysis.	Students would be able to determine the properties of planes and solids.
4	To develop simple mathematical model for engineering problems and carry out static analysis.	Understand the concepts of moment of inertia.
5		Students would be able to apply fundamental concepts of dynamics to practical problems.
6		Understand the basic elements of vibration.

EST 120: BASICS OF CIVIL AND MECHANICAL ENGINEERING

Sl No	Course Objectives	Subject Learning Outcomes or Course Outcomes
		On completion of course the students will be able to:
1	To impart a basic knowledge in Electrical Engineering with an understanding of fundamental concepts.	Gain preliminary knowledge in basic concepts of Electrical Engineering.

2	To impart the basic knowledge about the Electric and Magnetic circuits.	Discuss the working of various dc and ac machines
3	To inculcate the understanding about the AC fundamentals.	To predict the behaviour of any electrical and magnetic circuits.
4	To understand the working of various Electrical Machines.	To identify the type of electrical machine used for that particular application.
5		To wire any circuit depending upon the requirement.
6		Understand working principle of various analogue electrical measuring instruments.

HUN101: LIFE SKILLS

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	To have an increased awareness among students on issues in areas of sustainability.	Able to appreciate and explain the different types of environmental pollution problems and their sustainable solutions
2	To have an insight into global environmental issues.	To be aware of problem related to global environmental issues
3	To establish a clear understanding of the role and impact of various aspects of engineering and engineering decisions on environmental, societal, and economic problems.	Able to apply the concepts of sustainability in their respective area of specialization

4	To understand the role of	To understand the need of waste disposal
	engineering in achieving	and management
	sustainable world	

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	To inculcate the essentials of civil engineering field to the students of all branches	The students will be able to illustrate the fundamental aspects of civil engineering
2	To provide the students an illustration of the significance of the civil engineering profession satisfying societal needs.	The students should able to plan a building
3		Students will be able to explain about surveying for making horizontal and vertical measurements.
4	•	They will able to illustrate the uses of various building materials and construction of different components of a building.

PHL 120: ENGINEERING PHYSICS LAB

COURSE OBJECTIVES AND COURSE OUTCOME FOR

ESL 120: CIVL AND MECHANICAL WORKSHOP

SI.	Course Objectives	Subject Learning Outcomes or
-----	-------------------	------------------------------

No.		Course Outcomes
		On completion of course the students will be able to:
1	To make students familiarize with the practical aspects of volumetric analysis of water samples ad determine the parameters like alkalinity, chlorides and hardness.	To equip the students to apply the knowledge of Chemistry and take up Chemistry related topics as parts of their project works during higher semester of the course.
2	To improve the knowledge of different types of titrations used in volumetric analysis	To impart sound knowledge in the different fields of theoretical chemistry so as to apply it to the problems in engineering field. (b) To develop analytical capabilities of students so that they can characterize, transform and use materials in engineering and apply knowledge gained in solving related engineering problems
3	To make students develop in terms of practical skills required for analytical projects.	To develop abilities and skills that are relevant to the study and practice of Chemistry.
4	To study flash and fire point	To familiarize the students with different application oriented topics like new generation engineering material different instrumental methods etc.
5		To enable the students to acquire the knowledge in the concepts of chemistry for engineering applications.

ACADEMIC YEAR 2020-21

Even Semester

S8 EEE (2016 Batch)- KTU 2015 Scheme

SL NO	COURSE	SUBJECT NAME	STAFF HANDLED
NO	CODE		
1	EE 402	SPECIAL ELECTRICAL MACHINES	ARJUN MOHANLAL
2		INDUSTRIAL INSTRUMENTATION AND	
	EE 404	AUTOMATION	AMJITH S
3	EE 474	ENERGY MANAGEMENT AND AUDITING	SEETHU VIJAYAN
4		NON DEPARTMENTAL ELECTIVE:	
		ENVIRONMENTAL IMPACT	GAYATHRI DEVI G
	CE 482	ASSESSMENT	
5	FF 402	PROJECT & VIVA VOCE	
3	EE 492	PROJECT & VIVA VOCE	ARJUN MOHANLAL

EE 402 SPECIAL ELECTRICAL MACHINES

Sl No.	Course Objectives	Subject Learning Outcomes or course outcomes
		On completion of course the student will be able to:
1	To impart knowledge in Servomotors.	Gain knowledge in construction and principle of operation of .
2	To familiarize with different kinds of stepper motor and their applications in various fields.	Ability to get an insight on various types of stepper motors.
3	To impart knowledge in single phase special electrical machines and reluctance motors.	Compare the principle of operation of various types of single phase electrical machines.
4	To explain the role of brushes in conventional DC motors and about brushless DC motors	Analyze the function of brushes in various types of DC motors and their role in commutation.
5.	To familiarize with different kinds of linear induction motors and their applications in various fields	Ability to get an insight on various types of linear motors.

EE 404 INDUSTRIAL INSTRUMENTATION AND AUTOMATION

SL NO	COURSE OBJECTIVE	COURSE OUTCOME
1	To impart knowledge about Industrial instrumentation and automation	Select instruments and transducers for various physical variables.
2	To equip students in working with project and to take up research work in connected areas	Get an insight on data acquisition, processing and monitoring system
3	To give knowledge about the different types of transducers	Design various signal conditioning systems for transducers.
4	Make students understand the programming realization of PLC	Analyze dynamic responses of various systems.

EE 474 ENERGY MANAGEMENT AND AUDITING

SL	COURSE OBJECTIVE	COURSE OUTCOME
NO		
1	To enable the students to understand the concept of energy management and energy management opportunities.	Apply the Engineering knowledge for analyzing energy management utilization of power.
2	To understand the different methods used to control peak demand.	Develop solutions to control peak demand and energy saving opportunities.
3	To learn about energy saving opportunities with boilers, furnaces, HVAC, heat recovery systems etc	Understand the energy saving and fuel economy measures in various sytems.
4	To know energy auditing procedure. To understand the application of computers in energy management. To learn about types and schemes of co-generation.	Analyze and estimate audit. Identify optimal operation of co- generation.
5	To understand the different methods used for the economic analysis of energy projects.	Understand different methods used for economic analysis of energy projects.

CE 482 ENVIRONMENTAL IMPACT ASSESSMENT

SL NO	COURSE OBJECTIVE	COURSE OUTCOME
1	To enable students to understand the need to conserve the environment effectively	Obtain knowledge about methods to overcome environmental issues and to understand the key ideologies of EIA
2	To understand the concepts and steps involved in Environmental Impact Assessment	Analyze the best possible ways to implement methodologies for protecting the nature
3	To know various types of environmental pollution	Recognize opportunities for enabling rational use of energy without distressing the nature
4	To study the impact of various types of pollutants and their assessment techniques	Develop innovative energy efficiency solutions and demand management strategies

COURSE OBJECTIVES AND COURSE OUTCOMES FOR

EE 492 PROJECT& VIVA - VOCE

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	To introduce the students to variousemerging fields in electronics andcommunication.	Exhibit the strength and grip on the fundamentals of the subjects studied in the previous semesters.
2	To provide an opportunity to exercise the creative and innovative qualities in group project environment,	An ability to utilise technical resources

3	To excite the imagination of aspiring engineers, innovators and technopreneurs.	An ability to write technical documents and give oral presentation related to work completed.
4	To have hands-on experience in the students related field so that they can relate and reinforce what has taught in the classroom.	Perform requirement analysis and identify design methodologies.

S6 EEE (2017 Batch)- KTU 2015 Scheme

SL NO	COURSE CODE	SUBJECT NAME	STAFF HANDLED
1	EE302	ELECTROMAGNETICS	AMJITH S
2	EE304	ADVANCE CONTROL THEORY	GAYATHRI DEVI G
3	EE306	POWER SYSTEM ANALYSIS	KARTHIKA V S
4	EE308	ELECTRIC DRIVES	RAHUL P RAJ
5	HS300		SOUBHAGYA
	115300	PRINCIPLES OF MANAGEMENT	SASIKUMAR
6	EE372	BIOMEDICAL INSTRUMENTATION	ARJUN MOHANLAL
7	EE332	SYSTEMS & CONTROL LAB	GAYATHRI DEVI G
8	EE334	POWER ELECTRONICS & DRIVES LAB	RAHUL P RAJ
9	EE352	COMPREHENSIVE EXAM	АМЛТН S
10	EE366	ILLUMINATION TECHNOLOGY	RAHUL P RAJ

EE 302 ELECTROMAGNETICS

SL NO	COURSE OBJECTIVE	COURSE OUTCOME
1	To develop a conceptual basis of electrostatics, magneto statics, electromagnetic waves	Analyze fields and potentials due to static charges
2	To understand various engineering applications of electromagnetics	Explain the physical meaning of the differential equations for electrostatic and magnetic fields
3	To understand principles of propagation of uniform plane waves.	Understand how materials are affected by electric and magnetic fields
4	To understand aware of electromagnetic interference and compatibility	Understand the relation between the fields under time varying situations

COURSE OBJECTIVES AND COURSE OUTCOMES FOR

EE304: ADVANCED CONTROL THEORY

COURSE OUTCOME	COURSE OBJECTIVE
Design compensators using classical techniques	To provide a strong concept on the compensator design and on advanced control system analysis and design techniques
Analyse both linear and nonlinear system using state space methods	To analyse the behaviour of discrete time systems and nonlinear control systems
Analyse the stability of discrete system and nonlinear system	
Familiarize with principle of operation and application of controllers	

EE306 POWER SYSTEM ANALYSIS

		Course Outcomes
Sl. No.	Course Objectives	On completion of course the students will be able to:
1	Calculate the power transfer capability of transmission lines.	Demonstrate an understanding of the nature of the modern power system, including the behaviour of the constituent components and sub-systems
2	Analyse various voltage control techniques applicable to distribution feeders.	Describe the construction, operation and equivalent circuit of three-phase transformers
3	Model the networks in terms of symmetrical components and sequence networks.	Apply load flow analysis to an electrical power network and interpret the results of the analysis
4	Calculate the fault currents and voltages when faults occur in power system.	Analyse a network under both balanced and unbalanced fault conditions and interpret the results
5		Design a protection system for an item of electrical plant
6		Demonstrate an awareness of the methods used for voltage regulation in electrical power networks

Course Outcomes On completion of course the Sl. No. **Course Objectives** students will be able to: 1 To provide fundamental knowledge The ability to select a drive for a in dynamics and control of Electric particular application. Drives. 2 To justify the selection of drives for Understanding about the various various applications. control techniques employed for controlling drives with ac and dc motors. 3 To familiarize the various The ability to articulate power semiconductor controlled drives electronics applications in control employing various motors. of speed, torque and other components. 4 To understand the basic and The students will be able to analyze advanced speed control techniques any type of $1\Phi \& 3\Phi$ rectifiers fed using power electronic converters to DC motors 5 The students will be able to analyze any type of $1\Phi \& 3\Phi$ chopper fed **DC** motors 6 The ability to control the speed of an AC-AC & DC-AC converter fed to motor.

EE 308 ELECTRIC DRIVES

HS 300 PRINCIPLES OF MANAGEMENT

SL NO	COURSE OBJECTIVE	COURSE OUTCOME
1	To develop ability to critically analyse and evaluate a variety of management practices in the contemporary context	manage people and organisations
2	To understand and apply a variety of management and organisational theories in practice	critically analyse and evaluate management theories and practices
3	To be able to mirror existing practices or to generate their own innovative management competencies, required for today's complex and global workplace	plan and make decisions for organizations
4	To be able to critically reflect on ethical theories and social responsibility ideologies to create sustainable organizations	do staffing and related HRD functions

COURSE OBJECTIVES AND COURSE OUTCOME FOR

EE 372 ELECTIVE II BIOMEDICAL INSTRUMENTATION

Sl. No.	Course Objectives	Course Outcomes On completion of course the students
		will be able to:
1	Interpret technical aspects of medicine	To introduce students to the measurements involved in some medical equipments.
2	Solve Engineering Problems related to medical field	Ability to understand diagnosis and therapy related equipments

3	Understand medical diagnosis and therapy	Understanding the problem and ability to identify the necessity of an equipment to a specific problem
4	To familiarize students with various medical equipments and their technical aspects	Application of systematic engineering synthesis and design processes
5		Review the cardiac, respiratory and muscular physiological systems.

Sl. No.		Course Outcomes
	Course Objectives	On completion of course the students will be able to:
1	To simulate and design various gate firing circuits	Ability to design and conduct simulation and experiments
2	To familiarize the students by introducing P-Sim and Mutism and help them to simulate and analyses different Converters.	Ability to use the techniques, skills and modern engineering tools necessary for engineering practice
3	To enable the student to study and simulate various Chopper Circuits using Matlab	Ability to identify, formulate and sole engineering problems with simulation
4	Calculate the power transfer capability of transmission lines	Ability to simulate characteristics of SCR, MOSFET, IGBT
5		Ability to simulate Gate firing circuits.

EE 332 : SYSTEMS AND CONTROL LAB

	Ability to simulate Rectifier,
	Chopper, Inverter and AC Voltage
6	Controller

Sl No.	Course Objectives	Subject Learning Outcomes or course outcomes
		On completion of course the student will be able to:
1	To develop mathematical models for electrical systems, analyse the systems and implement controllers and compensators for systems based on system performance.	Develop mathematical models for servomotors and other electrical systems
2	To experimentaly determine the transfer function of a Servo-Motor	Performance analysis of different process control systems
3	To understand and practice the modeling, simulation, and implementation of a physical dynamical system by a linear time invariant ordinary differential equation	Performance analysis of different types of controllers
4	To highlight the electrical modeling of a second order system and analyse the under-damped, over-damped and critically damped cases	Use MATLAB and SIMULINK to design and analyze simple systems and compensators
5	To study the effects of poles and zeros location in the s-plane on the transient and steady state behaviour	Demonstrate the ability to apply Laplace transform, transfer functions, modelling RLC circuit, block diagrams for simulation and control
6	To study the effects of Lead, Lag and Lag-Lead series compensator on a second order system transient and steady state system response.	Demonstrate the ability to design and determine control system's parameters and transfer functions by combining both theoretical and applied analysis

	that they have acquired in their control
	courses and in this lab.

EE334: POWER ELECTRONICS & DRIVES LAB

COURSE OBJECTIVES AND COURSE OUTCOME FOR

		Course Outcomes
Sl. No.	Course Objectives	On completion of course the students will be able to:
1	To provide fundamental knowledge in dynamics and control of Electric Drives.	The ability to select a drive for a particular application.
2	To justify the selection of drives for various applications.	Understanding about the various control techniques employed for controlling drives with ac and dc motors.
3	To familiarize the various semiconductor controlled drives employing various motors.	The ability to articulate power electronics applications in control of speed, torque and other components.
4	To understand the basic and advanced speed control techniques using power electronic converters	The students will be able to analyzeany type of 1Φ & 3Φ rectifiers fedto DC motors
5		The students will be able to analyze any type of 1Φ & 3Φ chopper fed DC motors

EE 366: ILLUMINATION TECHNOLGY

6	The ability to control the speed of
	an AC-AC & DC-AC converter fed
	to motor.

EE352: COMPREHENSIVE EXAM

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	To develop communication competence in prospective engineers.	Communicate effectively.
2	To enable them to convey thoughts and ideas with clarity and focus. To develop report writing skills.	Make effective presentations.
	To equip them to face interview & Group Discussion.	Write different types of reports.
4	To inculcate critical thinking process.	Face interview & group discussion
5	To prepare them on problem solving skills.	Critically think on a particular problem.
6	To provide symbolic, verbal, and graphical interpretations of statements in a problem description.	Handle Engineering Ethics and Human Values.

S4 EEE (2018 Batch)- KTU 2015 Scheme

SL	COURSE	SUBJECT NAME	STAFF HANDLED
NO	CODE		
1		PROBABILITY DISTRIBUTIONS,	AMPADY VK
	MA202	TRANSFORMSAND NUMERICALMETHODS	AMFADIVK
2	EE202	SYNCHRONOUS & INDUCTION MACHINES	SEETHU VIJAYAN
3	EE204	DIGITAL ELECTRONICS AND LOGIC	MANJU J
	EE204	DESIGN	MANJO J
4	EE206	MATERIAL SCIENCE	RAHUL P RAJ
5	EE208	MEASUREMENTS & INSTRUMENTATION	KARTHIKA VS
6	HE210	LIFE SKILLS	CHINCHU S
7	EE 232	ELECTRICAL MACHINES LAB I	SEETHU VIJAYAN
8	EE 234	CIRCUITS AND MEASUREMENTS LAB	ARJUN MOHANLAL

COURSE OBJECTIVES AND COURSE OUTCOMES FOR

MA202: PROBABILITY DISTRIBUTIONS, TRANSFORMS AND NUMERICAL METHODS

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes

		On completion of course the students will be able to:
1	Providing students with a formal treatment of probability theory.	Develop problem-solving techniques needed to accurately calculate probabilities.
2	Equipping students with essential tools for statistical analyses at the graduate level.	Apply selected probability distributions to solve problems.
3	The goal is to provide the basic understanding of the derivation analysis and use of these numerical methods along with the rudimentary understanding of finite precision arithmetic.	Apply problem-solving techniques to solving real-world events.
4	Apply the appropriate numerical techniques for problems	Be aware of the use of numerical methods in modern scientific computing. Be familiar with finite precision computation. Be familiar with numerical solutions of nonlinear equations in a single variable.
5		Be familiar with numerical interpolation and approximation of functions. Be familiar with numerical integration and differentiation
6		Be familiar with numerical solution of ordinary differential equations. Be familiar with calculation and interpretation of errors in numerical methods.

EE202: SYNCHRONOUS AND INDUCTION MACHINES

SL	COURSE OBJECTIVE	COURSE OUTCOME
NO		

1	Give exposure to the students about the concepts of alternating current machines including the constructional details, principle of operation and performance analysis.	Acquire knowledge on operating principle of synchronous motor and different applications.
2	Learn the characteristics of induction machines and to learn how it can be employed for various applications .	Acquire knowledge on operating principle of 3 phase induction motors and select appropriate types for different applications
3	Identify alternator types and appreciate their performance.	Test and calculate performance parameters of 3 phase induction motors
4	Determine the voltage regulation and analyze the performance of alternators.	Familiarize with the principle of operation and application of 1 phase induction motors.

EE204 DIGITAL ELECTRONICS AND LOGIC DESIGN

		Course Outcomes
Sl. No.	Course Objectives	On completion of course the students will be able to:
1	Have a thorough understanding of the	Acquired knowledge about basics of
	fundamental concepts and techniques	digital electronics
	used in digital electronics.	
2	To understand and examine the structure	Acquired knowledge about solving
	of various number systems and its	problems related to number systems and Boolean algebra.
	application in digital design	
3	The ability to understand, analyze and	Ability to identify, analyze and design
	design various combinational and sequential circuits.	combinational circuits.

4	Ability to identify basic requirements for a design application and propose a cost effective solution	Ability to design various synchronous and asynchronous sequential circuits.
5		Acquired knowledge about internal circuitry and logic behind any digital system
6		To study and analyze the rectifier and regulated circuits.

		Course Outcomes
Sl. No.	Course Objectives	On completion of course the students will be able to:
1	An ability to apply knowledge of mathematics, science and engineering to materials issues	Discuss and communicate the management evolution and how it will affect future managers
2	An ability to design and conduct experiments and critically analyze and interpret data	Observe and evaluate the influence of historical forces on the current practice of management.
3	An ability to work effectively in multidisciplinary teams, be conversant in languages of other fields, and provide leadership to such teams	·

EE206: MATERIAL SCIENCE

4	An ability to design a process and/or material system to achieve specific requirements within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	Practice the process of management's four functions: planning
5		Evaluate leadership styles to anticipate the consequences of each leadership style.
6		Gather and analyze both qualitative and quantitative information to isolate issues and formulate best control methods.

EE208: MEASUREMENTS AND INSTRUMENTATION

SL NO	COURSE OBJECTIVE	COURSE OUTCOME
1	To develop understanding of various electrical measuring instruments and instrumentation devices	Compare different types of instruments- their working principles, advantages and disadvantages
2	To introduce a capability to monitor, analyze and control any physical system	Explain operating principle of various ammeters, voltmeters and ohm meters
3	To provide knowledge to design and create novel products and solutions for real life problems	Describe wattmeter, energy meters, different flux meters and permeability measurement techniques.
4	To understand how different types of meters works and their construction and to make a knowledge to use	Understand working principle of cathode ray oscillator, transducers of physical

modern tools necessary for electrical	variables	and	describe	operating
projects.	priciples			

HS210: LIFE SKILLS

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	To develop communication competence in prospective engineers.	Communicate effectively.
2	To enable them to convey thoughts and ideas with clarity and focus. To develop report writing skills.	Make effective presentations.
	To equip them to face interview & Group Discussion.	Write different types of reports.
4	To inculcate critical thinking process.	Face interview & group discussion
5	To prepare them on problem solving skills.	Critically think on a particular problem.
6	To provide symbolic, verbal, and graphical interpretations of statements in a problem description.	Handle Engineering Ethics and Human Values.

COURSE OBJECTIVES AND COURSE OUTCOME FOR

EE232: ELECTRICAL MACHINES LAB -I

			Course Outcomes
--	--	--	-----------------

Sl. No.	Course Objectives	On completion of course the students will be able to:
1	To learn the characteristics of dc machines and to learn how it can be employed for various applications.	The ability describe the principle of operation of dc motor and select appropriate motor types for different applications
2	To get an overview of some of the dc machines and transformers and industrial applications	The skill to analyze the response of any electrical machine.
3	To give exposure to the students about the concepts of direct current machines and transformers	The students will be able to explain how dc machines and transformers
4	Describe the constructional details, principle of operation and performance Analysis of dc machines and transformers.	The skill to analyze the performance of different types of dc motors
5		The ability to troubleshoot the operation of an electrical machine.
6		Familiarize with the principle of operation and performance of three phase transformers

EE234: CIRCUITS AND MEASUREMENTS LAB

		Course Outcomes
Sl. No.	Course Objectives	On completion of course the students will be able to:

1	To prepare the students to have a basic knowledge of basic integrator differentiator and summer circuits.	Ability to conduct experiments on op- amp circuits.
2	To prepare the students to have a basic transducers.	Ability to conduct experiments using transducer kits such as LVDT, thermistor, thermocouple etc.
3	The ability to conduct using bridge circuits.	Have knowledge of range extension of ammeter and voltmeter using Kelvin's double bridge and wheaston's bridge
4	To expose the students to the operation potentiometers.	Understand the measurement and calibration of vernier dial potentiometer and slide wire potentiometer.
5	Study of energy meters.	Calibration of single phase and 3 phase energy meters

S2 EEE (2019 Batch)- KTU 2019 Scheme

Sl no	Course code	Subject name	Staff handled
1	CYT 100	ENGINEERING CHEMISTRY	RENJU R
2	EST 100	Engineering MECHANICS	Sasi K S
3		BASICS OF ELECTRICAL AND	PRAJEESH R
	EST 130	ELECTRONICS ENGINEERING	
4	CYL 120	ENGINEERING CHEMISTRY LAB	RENJU R
5		ELECTRICAL AND ELECTRONICS	RAHULP RAJ
	ESL 130	WORKSHOP	
6		VECTOR CALCULUS, DIFFERENTIAL	SANGHEETHA S
	MAT102	EQUATION AND TRANSFORMS	
7	HUN10	PROFESSIONAL COMMUNICATION	SREETI GAGADHARAN
8	EST102	PROGRAMMING IN C	AMITHA R

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	Dynamics of mechanical and electrical oscillation using Fourier series and integrals; time and frequency representations for driven damped oscillators, resonance; one-dimensional waves in classical mechanics and electromagnetism; normal modes.	Solve for the solutions and describe the behavior of a damped and driven harmonic oscillator in both time and frequency domains. Damped and Forced Oscillations oscillating system problems.
2	The fundamental principles of photonics that complement the topics in the optics and laser courses and to help students develop problem-solving skills applicable to real-world photonics problems.	Define and explain the propagation of light in conducting and non-conducting media.
3	Introduce basic concepts and principles of acoustics.	Define and explain the physics governing laser behaviour and light matter interaction ting and non-conducting media.
4		Apply wave optics and diffraction theory to a range of problems
5		Explain and calculate the physical effects of acoustic reflections, absorption, scattering, diffusion, diffraction, and propagation losses.
6		Use advanced theoretical, numerical, and experimental techniques to model and analyze acoustical elements in musical

CYT100: ENGINEERING CHEMISTRY

	instruments, the human voice, room
	acoustics, and audio.

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	Increase ability to communicate with people.	To hand letter will improve.
2	Learn to sketch and take field dimensions.	To perform basic sketching techniques will improve.
3	Learn to take data and transform it into graphic drawings.	To draw orthographic projections and sections.
4	Learn basic Auto Cad skills.	To use architectural and engineering scales will increase.
5	Learn basic engineering drawing formats	To produce engineered drawings will improve

EST100: ENGINEERING MECHANICS

6	Prepare the student for future Engineering positions	To convert sketches to engineered drawings will increase.

EST130: BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	To get basic idea about types, specification and common values of passive components.	Student can identify the active and passive electronic components.
2	To familiarise the working and characteristics of diodes transistors, MOSFET and some measuring instruments.	Student can setup simple circuits using diodes, transistors and other electronic components.
3	To understand working of diodes in circuits and in rectifiers.	Student will get fundamental idea about basic communication and entertainment electronics.

4	To understand the concept of mobile networks.	Student will get fundamental idea about mobile operation.
5		Student will get fundamental idea about different electronic circuits.

CYL120: ENGINEERING CHEMISTRY LAB

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	Dynamics of mechanical and electrical oscillation using Fourier series and integrals; time and frequency representations for driven damped oscillators, resonance; one-dimensional waves in classical mechanics and electromagnetism; normal modes.	Solve for the solutions and describe the behavior of a damped and driven harmonic oscillator in both time and frequency domains. Damped and Forced Oscillations oscillating system problems.
2	The fundamental principles of photonics that complement the	Define and explain the propagation of light in conducting and non-conducting media.

	topics in the optics and laser courses and to help students develop problem-solving skills applicable to real-world photonics problems.	
3	Introduce basic concepts and principles of acoustics.	Define and explain the physics governing laser behaviour and light matter interaction ting and non-conducting media.
4		Apply wave optics and diffraction theory to a range of problems
5		Explain and calculate the physical effects of acoustic reflections, absorption, scattering, diffusion, diffraction, and propagation losses.
6		Use advanced theoretical, numerical, and experimental techniques to model and analyze acoustical elements in musical instruments, the human voice, room acoustics, and audio.

ESL130: ELECTRICAL AND ELECTRONICS WORKSHOP

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	To get basic idea about types,specification and common values ofpassive components.	Student can identify the active and passive electronic components.
2	To familiarise the working and characteristics of diodes transistors, MOSFET and some measuring instruments.	Student can setup simple circuits using diodes, transistors and other electronic components.

3	To understand working of diodes in circuits and in rectifiers.	Student will get fundamental idea about basic communication and entertainment electronics.
4	To understand the concept of mobile networks.	Student will get fundamental idea about mobile operation.
5		Student will get fundamental idea about different electronic circuits.

MAT 102 - VECTOR CALCULUS, DIFFERENTIAL EQUATION AND TRANSFORMS

Sl.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	To put it briefly, the point of this class is to take your existing knowledge of calculus and apply it towards the construction and solution of mathematical models in the form of differential equations.	Distinguish between linear, partial and ordinary differential equations. State the basic existence theorem for 1st order ODE's and use the theorem to determine a solution interval
2	Solve non-homogeneous linear equations with constant coefficients using the methods of undetermined coefficients and variation of parameters.	Recognize and solve a non homogeneous differential equation. Find particular solutions to initial value problems.
3	Introduce the Fourier series and its application to the solution of partial differential equation.	Find the Fourier series representation of a function of one variable.
4	To provide the student with the concept and the understanding of basics in Partial Differential Equations.	Knowledge in the Technic, methodology of solving Partial Differential Equations. A basic understanding in the Transforms

		which are useful in solving engineering problems.
5	This course introduces ideas of wave equation and heat equation which are widely used in the 29modeling and analysis of a wide range of physical phenomena and has got applications across all branches of engineering.	At the end of the course students will have acquired basic knowledge of differential equations and methods of solving them and their use in analyzing typical mechanical or electrical systems.

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	To excite the student on creative design and its significance	To appreciate different elements involved in design and to apply them when they called for.
2	To make the student aware of the processes involved in design	Aware of product centred and user centred aspects that makes in the design process.
3	To make the student understand the interesting interaction of various segments of humanities, sciences and engineering in the evolution of a design	To be aware of different stages in design process and results of incorporating other fields with engineering stream
4	To get an exposure as to how to engineer a design.	Understand different stages in manufacturing of a designed product

HUN 102: PROFESSIONAL COMMUNICATION

COURSE OBJECTIVES AND COURSE OUTCOME FOR

EST102: PROGRAMMING IN C

SI.	Course Objectives	Subject Learning Outcomes or
No.		Course Outcomes
		On completion of course the students will be able to:
1	Competency in an engineering or science profession via promotion to positions of increasing responsibility, publications, and/or conference presentations.	An ability to apply knowledge of mathematics, science, and engineering.
2	Adaptability to new developmentsin science and technology bysuccessfully completing or pursuinggraduate education in engineeringor related fields, or participating inprofessional development and/orindustrial training courses.	An ability to design and conduct experiments, as well as to analyze and interpret data.
3		An ability to identify, formulate, and solve engineering problems
4		Understanding of professional and ethical responsibility
5		The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
6		A recognition of the need for, and an ability to engage in life-long learning